
Laplacian Deformation on 2D/3D Mesh Editing

Chen Pan, Isabella Liu, Zhuoqun Robin Xu, Tongchuan Shen

March 2021

1 Abstract

In this project we explore the application of Laplacian deformation on mesh
editing, as well as propose several possible ways to optimize the existing algorithm.
Since Laplacian coordinate describes surface’s local intrinsic property well, an
optimization of Laplacian coordinate during non-rigid transformation on surface
can greatly decrease the unreasonable distortion and preserve the local property
of each point. We performed the experiment in both 2D and 3D and attached
our result as a demo video here.1

2 Introduction

For surface editing in computer graphics, surfaces are usually presented in
euclidean coordinates of points. However, such representation while explicitly
specify their global positions, does not realize local properties for the surface. If
we do mesh editing using such kind of global coordinate system, object’s local
geometric properties may not be preserved well and therefore cause unreasonable
distortion. [Sor+] first proposed the method to use Laplacian coordinate to
represent each points of a surface - Laplacian coordinates represent a point
relative to its neighbors. This allows us to maintaining local geometric properties
while editing the surface. In our project, we adopt the method from [Sor+]
as our start point and then explored some possible ways to optimize current
algorithm.

In the remaining parts we will first look at the problem definition, including
the concept of the Laplacian coordinate and problem formulation. In the
experiment part we will briefly introduce our experimental details and present
part of our results. Finally, we examine the whole process, make conclusion and
introduce some potential improvement to be achieved in the future.

1Please refer to our demo video: https://www.youtube.com/watch?v=R90fUuZJFXU

1

https://www.youtube.com/watch?v=R90fUuZJFXU
https://www.youtube.com/watch?v=R90fUuZJFXU

3 Problem Definition

3.1 Laplacian coordinate

Definition 1. Given a mesh M described by (V,K), where V describes the
vertices and K describes the connectivity of each pair of vertices, for a point
vi ∈ V , let N(vi) be the vertices connected to vi, then the Laplacian coordinate
is defined as:

δi = vi −
1

di

∑
j∈N(vi)

vj (1)

Where di = |N(vi)| is the degree of vi.

Figure 1: Illustration of Laplacian coordinate on a point

Note that the transformation between normal coordinate and the Laplacian
coordinate is linear and can be described by a matrix.
Let A be the adjacency matrix of V and diagonal matrix D be the degree matrix,
then from δi = vi − 1

di

∑
j∈N(vi)

vj , we can get

∆ = (I −D−1A)V (2)

We define L = I −D−1A be the Laplacian operator [Tau], then

∆ = LV (3)

3.2 Problem Formulation

Our goal is to maintain the local geometric properties of original surface as mush
as possible, while performing surface deformation and avoiding unreasonable
distortion.
Given a mesh M. We want to move a set of vertices to a new location, let
U = {ui} be the constrain (target location), and δ′i be the Laplacian coordinate
of the transformed mesh M′ = (V ′,K), we want to minimizing the change of
Laplacian coordinate while moving the vertices to the desired location, the error
functional is defined below and our problem is to minimize this error function.

E(V ′) =

n∑
i=1

‖δi − δ′i‖
2

+

n∑
i=m

‖v′i − ui‖
2

(4)

2

Figure 2: The yellow points are the control points, the red points are the anchor
points. We hope to move the control points to the desired location while fix the
anchor points as much as possible. Illustration pictures borrowed from [Sor+].

3.3 Other Optimization Details

3.3.1 Solving the Problem of Laplacian Coordinate’s Sensitivity to
Linear Transformation

As indicated by [Sor+], the Laplacian coordinates are invariant under translation,
but they are not preserved under linear transformation such as rotation. In other
word, they are sensitive to linear transformation and will cause some unwanted
distortion while doing the deformation.

To solve such problem, we use the method from [Sor+], which is compute
an appropriate transformation Ti for each vertex vi base on the new vertexes
V ′, i.e. Ti is a function of Vi, and we reformulate the error function as

E(V ′) =

n∑
i=1

‖Ti(V ′)δi − δ′i‖
2

+

n∑
i=m

‖v′i − ui‖
2

(5)

Since Ti is a linear function of V ′, solving for V ′ implicitly gives us Ti. We can
view E(V ′) as a quadratic function of V ′.

To properly solve for V ′, we need to constrain Ti, otherwise the natural
minimizer for E(V ′) is a membrane solution and the geometric properties will be
lost. So we want to limit Ti to translations, rotations, and isotropic scales.
The class of isotropic scales and rotations can be expressed as T = exp(H),
where H is a skew symmetric matrix. And the translational part can be added
by using homogeneous coordinates.

Since in 3D, skew-symmetric matrix can be represented by vector cross
product, we can write T as:

T = s expH = s(αI + βH + γhTh) (6)

Where Hx = h× x.
Note that in 2D scenerios, Ti can be characterized with linear expression

Ti =

 a w tx
−w a ty
0 0 1

 (7)

3

While in 3D, we use linear approximation for hTh and get

Ti =


s −h3 h2 tx
h3 s −h1 ty
−h2 h1 s tz

0 0 0 1

 (8)

Now let zi = (si,hi, ti)
T ∈ R7 be the vector of unknowns in Ti, we can rewrite

equation (5) as

‖Aizi − bi‖2 (9)

Where Ai contains the position of vi and its neighbors. bi contains position of
v′i and its neighbors. Such minimization problem can be solved by

zi = (ATi Ai)
−1AT bi (10)

We can also write the dual of our problem from equation (9), since L =

‖Aizi − bi‖2, the dual problem is

max
λ

min ‖Aizi − bi‖2 = min ‖Aizi − bi‖2

(equation (9) is a unconstrained problem for zi)

3.3.2 Enforce Rotation Matrix to SO(3)

While the method in section 3.3.1 gives a good representation of rotation matrix,
in our experiment (mentioned in Section 4) we use cvxpy and want fewer
optimization variable. Therefore in 3D, we use the Umeyama’s method [Ume]
to enforce any optimized 4 matrix to be a valid rotation matrix.

3.3.3 Reduce Computational Complexity

Another optimization we have performed here is to omit the computation for
the vertices that won’t be moved. Consider the following example, we will only
move the vertices between the anchors. In our algorithm, we only compute the
movement of these vertices, and concatenate the results with the positions of
the unmoved vertices. In this way, we have largely reduced the computation
cost.

Figure 3: The original shape is a unit circle, red point is the control point.
For illustration we have moved it to the desired location. Yellow points are the
anchor points.

4

4 Experiments

We performed the experiment in both 2D and 3D. For 2D, we selected several
hand-drawing pictures from the Internet, run basic image-processing steps to
get 2D point cloud from the picture. Then calculate the degree matrix (D)
and adjacency matrix (A) and compute the normalized Laplacian matrix (L).
We then use the cvxpy package to do the optimization steps. Details of the
deformation result can be found in the attached video file. In 3D, we choose
Houdini 18.5 as our mesh processing tool and python + cvxpy as our optimization
tool. We run our optimized deformation on the low-poly Stanford rabbit model.
Details of the result can be found in the video as well.

Figure 4: Illustration of our 2D experiment. After indicating the desired new
location of the control point (red point) and anchor points (yellow points), the
bird’s tail is moved smoothly from the original pose to the new pose without any
strange distortion. Local geometric properties are also preserved well during the
deformation.

Figure 5: Screenshots from our video, red point is the control point, yellow
points are the anchor points. All the intermediate steps are generated
automatically by our algorithm. There is no unreasonable distortion, local
properties of vertices are preserved well during the deformation.

5

5 Conclusion and Future Work

Our algorithm performs deformation on 2D shapes and 3D meshes smoothly
while preserving the local geometric properties well. Our optimization makes it
run quite efficiently. In the future, we can apply our 2D optimization technique
in 3D scenarios, which means we can just compute part of the vertices that
require deformation instead of calculating for the whole point set. This algorithm
can also be applied to graphics processing tools. We can use this algorithm to
implement a program such that we can freely deform the figure by dragging
around the control point.

6 Individual Contribution

Chen implemented an optimization of this algorithm and a pipeline to generate
experiment results. He also worked on the optimization detail, experiments,
and conclusion and future work sections in this report.
Isabella implemented the algorithm in both 2D and 3D, generated the experiment
results. She also worked on the final report revision.
Robin implemented the procedural visualization process of deforming experiment
and animation generation. He also worked on the video demo of the final report.
Tongchuan is responsible for the introduction and problem formulation in this
report.

References

[Sor+] Olga Sorkine et al. Laplacian Surface Editing. url: http://people.
eecs.berkeley.edu/~jrs/meshpapers/SCOLARS.pdf.

[Tau] Gabriel Taubin. A Signal Processing Approach To Fair Surface Design.
url: http://mesh.brown.edu/taubin/pdfs/taubin-sg95.pdf.

[Ume] Shinji Umeyama. Least square Estimation of Transformation parameters
Between Two point patterns. url: http://web.stanford.edu/class/
cs273/refs/umeyama.pdf.

6

http://people.eecs.berkeley.edu/~jrs/meshpapers/SCOLARS.pdf
http://people.eecs.berkeley.edu/~jrs/meshpapers/SCOLARS.pdf
http://mesh.brown.edu/taubin/pdfs/taubin-sg95.pdf
http://web.stanford.edu/class/cs273/refs/umeyama.pdf
http://web.stanford.edu/class/cs273/refs/umeyama.pdf

	Abstract
	Introduction
	Problem Definition
	Laplacian coordinate
	Problem Formulation
	Other Optimization Details
	Solving the Problem of Laplacian Coordinate's Sensitivity to Linear Transformation
	Enforce Rotation Matrix to SO(3)
	Reduce Computational Complexity

	Experiments
	Conclusion and Future Work
	Individual Contribution

